\qquad

Section 14.3-15.2 Review

See full summaries at the end of each of these sections in the course textbook.

Brief Summary of $\mathbf{1 4 . 3}$

- The length s of a path $\boldsymbol{r}(t)=\langle x(t), y(t), z(t)\rangle$ for $a \leq t \leq b$ is \qquad .
- The arc length function: $s(t)=$ \qquad .
- Speed is the derivative of distance traveled with respect to time:

$$
v(t)=\frac{d s}{d t}=
$$

\qquad .

Section 14.3 Additional Exercises

1. Find the speed at the time $t=4$ of $\boldsymbol{r}(t)=\langle 2 t+3,4 t-3,5-t\rangle$.
2. Compute the length of the curve $\boldsymbol{r}(t)=\left\langle 2 t, \ln t, t^{2}\right\rangle$ over the interval $1 \leq t \leq 4$.
3. Find an arc length parametrization of the cycloid with parametrization $r(t)=\langle t-\sin t, 1-\cos t\rangle$.

Section 15.1 Additional Exercises

1. Draw a contour map of the following functions. Include at least five level curves: $f(x, y)=x y$ and $f(x, y)=3 x^{2}-y^{2}$.

Section 15.2 Additional Exercises

Evaluate the following limits or show that they do not exist.
1.

$$
\lim _{(x, y) \rightarrow(2,-1)}\left(x y-3 x^{2} y^{3}\right)
$$

2.

$$
\lim _{(x, y) \rightarrow(\pi / 4,0)} \tan x \cos y
$$

3.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x}{x^{2}+y^{2}}
$$

4.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-y^{2}}{\sqrt{x^{2}+y^{2}}}
$$

5. Is the following function continuous?

$$
f(x, y)= \begin{cases}x^{2}+y^{2} & \text { if } x^{2}+y^{2}<1 \\ 1 & \text { if } x^{2}+y^{2} \geq 1\end{cases}
$$

6. Evaluate the limit

$$
\lim _{(x, y) \rightarrow(0,2)}(1+x)^{y / x} .
$$

