Name:_____

Section 14.3–15.2 Review

See full summaries at the end of each of these sections in the course textbook.

Brief Summary of 14.3

- The length s of a path $\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle$ for $a \le t \le b$ is _____.
- The arc length function: s(t) =_____.
- Speed is the derivative of distance traveled with respect to time:

$$v(t) = \frac{ds}{dt} = \underline{\qquad}.$$

Section 14.3 Additional Exercises

1. Find the speed at the time t = 4 of $\mathbf{r}(t) = \langle 2t + 3, 4t - 3, 5 - t \rangle$.

2. Compute the length of the curve $\mathbf{r}(t) = \langle 2t, \ln t, t^2 \rangle$ over the interval $1 \le t \le 4$.

3. Find an arc length parametrization of the cycloid with parametrization $r(t) = \langle t - \sin t, 1 - \cos t \rangle$.

Section 15.1 Additional Exercises

1. Draw a contour map of the following functions. Include at least five level curves: f(x,y) = xy and $f(x,y) = 3x^2 - y^2$.

Section 15.2 Additional Exercises

Evaluate the following limits or show that they do not exist.

1.

$$\lim_{(x,y)\to(2,-1)} (xy - 3x^2y^3)$$

2.

$$\lim_{(x,y)\to(\pi/4,0)}\tan x\cos y$$

3.
$$\lim_{(x,y) \to (0,0)} \frac{x}{x^2 + y^2}$$

4.
$$\lim_{x \to \infty} \frac{x^2 - y^2}{\sqrt{2 - y^2}}$$

$$\lim_{(x,y)\to(0,0)} \frac{x^2 - y^2}{\sqrt{x^2 + y^2}}$$

5. Is the following function continuous?

$$f(x,y) = \begin{cases} x^2 + y^2 & \text{if } x^2 + y^2 < 1\\ 1 & \text{if } x^2 + y^2 \ge 1 \end{cases}$$

6. Evaluate the limit

$$\lim_{(x,y)\to(0,2)} (1+x)^{y/x}.$$